EVIDENCE ON DEVELOPMENTAL AND REPRODUCTIVE TOXICITY OF CHLOROFORM

Reproductive and Cancer Hazard Assessment Section (RCHAS) Office of Environmental Health Hazard Assessment (OEHHA) California Environmental Protection Agency (Cal/EPA)

CHLOROFORM (CAS No. 67-66-3)

- Trichloromethane: CHCl₃
- Annual U.S. production over 500 million pounds
- By-product of water disinfection by chlorine
- Exposure may occur in the workplace, via consumption of contaminated water, or via exposure to vapor of contaminated water

PHARMACOKINETICS OF CHLOROFORM

- Absorbed by oral, inhalation, or dermal routes
- Rapid distribution throughout the body
 - Crosses placenta
 - Expected to appear in breast milk
- Metabolized by cytochrome P450-dependent pathways
- Non-metabolized chloroform excreted via exhalation

Non-DART Effects of Chloroform

Acute Effects:

- Anesthesia
- Liver necrosis
- Death

Chronic Effects:

- Neurological effects
- Cytotoxicity in liver, kidney, and nasal mucosa

Carcinogenicity:

• Proposition 65 carcinogen

Developmental Toxicity of Chloroform by Inhalation in the Rat (1a)

Schwetz et al., 1974 – 0, 30, 100, 300 ppm

- •Decreased pregnancy rate, litter size, fetal weight and length, altered sex ratio (300 ppm)
- •Increased gross anomalies (100 ppm)
- •Increased skeletal anomalies, decreased length (30 ppm)
- •Reduced maternal body weight (300 ppm)

Developmental Toxicity of Chloroform by Inhalation in the Rat (1b)

Schwetz et al., 1974 – feed restricted control group

	Feed restricted	300 ppm
Feed gd 12-13 (% ad lib control)	17%	4%
Pregnant/bred	8/8	3/20
Maternal wt gd 13 (% ad lib control)	72%	62%
Fetal weight at term (% ad lib control)	91%	60%

Developmental Toxicity of Chloroform by Inhalation in the Rat (2)

Baeder & Hoffman, 1988 – 0, 30, 100, 300 ppm

- •Decreased fetal length (30, 100, 300 ppm)
- •Decreased litters, and fetal weight (300 ppm)
- •Reduced maternal body weight (30, 100, 300 ppm)

Baeder & Hoffman, 1991 – 0, 3, 10, 30 ppm

- •Decreased fetal weight and length (30 ppm)
- •Increased ossification variations (3, 10, 30 ppm)
- •Reduced maternal body weights (10, 30 ppm)

Developmental Toxicity of Oral Chloroform in the Rat; by Gavage

Thompson et al., 1974 – 0, 20, 50, 126 mg/kg-day

- •Decreased fetal weights (126 mg/kg-day)
- •Decreased maternal weight gain (50, 126 mg/kg-day)

Ruddick et al., 1983 – 0, 100, 200, 400 mg/kg-day

- •Decreased fetal weight (400 mg/kg-day)
- •Decreased maternal weight gain (100, 200, 400 mg/kg-day)

Developmental Toxicity of Chloroform by Inhalation in the Mouse

Murray et al., 1979 – 0, 100 ppm on gestation days 1-7, 6-15, or 8-15

- •Decreased pregnancy rate (days 1-7 or 6-15)
- •Increased resorptions (days 1-7)
- •Decreased fetal body weight and length (days 1-7 or 8-15)
- •Increased cleft palate & retarded ossification of sternebrae (days 1-7 or 8-15)
- •Decreased maternal weight gain (days 1-7 or 8-15)

Developmental Toxicity of Oral Chloroform in the Rabbit; by Gavage

Thompson et al., 1974 – 0, 20, 35, 50 mg/kg-day

- •Decreased fetal weights (20, 50 mg/kg-day)
- •Excess maternal death (50 mg/kg-day)
- •Decreased maternal weight gain (50 mg/kg-day)

Developmental Neurotoxicity of Oral Chloroform in the Mouse; by Gavage

Burkhalter and Balster, 1979 – 31.1 mg/kg-day, prior to mating, throughout gestation, lactation, and to pups

- •Reduced postnatal weight gain (31.1 mg/kg-day)
- •Lower scores for forelimb placement, postnatal days 5 and 7 (31.1 mg/kg-day)
- Maternal effects not discussed

Male Reproductive Toxicity of Chloroform in Mice

Inhalation Sperm Study

Land et al., 1979 & 1981 – 0, 400, 800 ppm (roughly 0, 450, 900 mg/kg-day)

Abnormal sperm morphology

Gavage Continuous Breeding Study

NTP, 1988 – 0, 6.6, 15.9, 41.2 mg/kg-day

- •No effects on fertility or sperm parameters
- •Increased epididymal weight in F1 generation

Female Reproductive Toxicity of Chloroform (1)

NTP, 1988 – 0, 6.6, 15.9, 41.2 mg/kg-day

- •Continuous breeding study in mice, by gavage
- •No adverse reproductive effects

U.S. EPA, 1980 – 0, 20, 38, 57, 81, 160 mg/kg-day

- •90-day toxicity study in rats, drinking water
- •No effects on ovaries or uterus

Heywood et al., 1979 – 0, 15, 30 mg/kg-day

- •7.5-year chronic study in dogs, by capsule
- •No effects on ovaries or uterus

Female Reproductive Toxicity of Chloroform (2): Data From Developmental Toxicity Studies

Rats, inhalation

- •Reduced pregnancy rate or complete resorption of litters
- •Decreased litter size and/or increased resorption frequency

Mice, inhalation

•Reduced pregnancy rate and/or increased resorptions

Rats, oral

•No effects on live litter size or resorption frequency

Rabbits, oral

•Complete abortion of litters, not clearly related to dose

Summary of DART Effects Reported Following Chloroform Exposure

Developmental

- Decreased pregnancy rate
- Increased resorptions
- Decreased fetal weight and length

Male Reproductive

•Abnormal sperm

Female Reproductive

- Decreased pregnancy rate
- Increased resorptions and whole-litter abortions

